Electrospun PCL in vitro: a microstructural basis for mechanical property changes.
نویسندگان
چکیده
Polymeric tissue-engineering scaffolds must provide mechanical support while host-appropriate cells populate the structure and deposit extracellular matrix (ECM) components specific to the organ targeted for replacement. Even though this concept is widely shared, changes in polymer modulus and other mechanical properties versus biological exposure are largely unknown. This work shows that specific interactions of biological milieu with electrospun scaffolds can exert control over scaffold modulus. The net effects of biological and non-biological environments on electrospun structures following 7 and 28 days of in vitro exposure are established. Reduction of modulus, ultimate tensile strength and elongation occurs without the apparent involvement of classic hydrolysis mechanisms. We describe this phenomenon as deposition-induced inhibition of nanofiber rearrangement. This phenomenon shows that both mechanical and morphological characterization of electrospun structure under load in biological environments is required to tailor scaffold design to pursue specific tissue-engineering goals.
منابع مشابه
The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold
In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...
متن کاملThe controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold
In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...
متن کاملNanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem c...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملEffect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds.
The selection of an appropriate scaffold represents one major key to success in tissue engineering. In cardiovascular applications, where a load-bearing structure is required, scaffolds need to demonstrate sufficient mechanical properties and importantly, reliable retention of these properties during the developmental phase of the tissue engineered construct. The effect of in vitro culture cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomaterials science. Polymer edition
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2009